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ABSTRACT
We investigate the estimation of the time- and frequency-
dependent coherent-to-diffuse ratio (CDR) from the measured
spatial coherence between two omnidirectional microphones.
We illustrate the relationship between several known CDR es-
timators using a geometric interpretation in the complex plane,
discuss the problem of estimator bias, and propose unbiased
versions of the estimators. Furthermore, we show that knowl-
edge of either the direction of arrival (DOA) of the target source
or the coherence of the noise field is sufficient for an unbiased
CDR estimation. Finally, we apply the CDR estimators to the
problem of dereverberation, using automatic speech recognition
word error rate as objective performance measure.

Index Terms— Dereverberation, Reverberation Suppres-
sion, Spatial Coherence, Diffuse Noise Suppression

1. INTRODUCTION

The idea of using short-time spatial coherence estimates for sig-
nal enhancement in the short-time Fourier transform (STFT) do-
main dates back to 1977, when Allen et al. [1] proposed to es-
sentially use the magnitude of the spatial coherence in each time-
and frequency bin as a gain for reverberation suppression. Other
heuristic methods for noise reduction and dereverberation using
coherence estimates have since been proposed, e.g., in [2], and
most recently in [3], where a soft threshold function is used to
compute a gain from the coherence magnitude, and the parame-
ters of the threshold function are adapted depending on the his-
togram of the coherence magnitude.

Short-time coherence estimates have also been investigated
for noise suppression by postfilters as part of beamformers, and
solutions which are optimal under certain conditions have been
derived for the suppression of uncorrelated [4, 5] and diffuse [6]
noise. Compared to the heuristic methods, an important result
from these postfilters is that optimum diffuse noise suppression
is not possible based on only the magnitude of the spatial coher-
ence.

More recently, explicit estimators for the coherent-to-diffuse
ratio (CDR), i.e., the ratio between direct and diffuse signal com-
ponents, have been formulated [7, 8], building on the earlier op-
timum postfilter derivations. These results have since been gen-
eralized from omnidirectional microphones to other microphone

directivities [9, 10], spherical microphone arrays [11], and ap-
plied to dereverberation with different noise coherence functions
[12].

In this paper, we first describe the signal model for the acqui-
sition of a noisy or reverberated signal by two omnidirectional
microphones, and define the CDR. Then, we investigate and vi-
sualize several known CDR estimators, and propose improved
unbiased variants. Using a geometric interpretation in the com-
plex plane, we show that knowledge of either the target signal di-
rection or the noise coherence is sufficient for an unbiased CDR
estimation, and derive estimators for the cases of unknown target
signal direction and unknown noise coherence. Finally, we apply
the CDR estimators to dereverberation, processing reverberated
speech and evaluating the recognition accuracy achieved by an
automatic speech recognizer.

2. SIGNAL MODEL

We consider the acquisition of a reverberated or noisy speech
signal by two omnidirectional microphones with spacing d. The
auto- and cross-power spectra of the microphone signals xi are
Φxixj (k, f), i, j = 1, 2, with the frame index k and frequency
f . Assuming that microphones are identical and closely spaced,
Φx1x1 = Φx2x2 = Φx. The complex spatial coherence function
is then defined as

Γx(k, f) =
Φx1x2(k, f)

Φx(k, f)
. (1)

Furthermore, it is assumed that the direct signal and noise or re-
verberation components, with power spectra Φs and Φn, respec-
tively, are orthogonal, so that Φx = Φs + Φn. The direct sound
is modeled as a plane wave with the direction of arrival (DOA) θ
with respect to the microphone axis, where θ = 0 ◦ corresponds
to broadside direction. The noise or reverberation component is
modeled as a diffuse sound field; for (late) reverberation, this as-
sumption can be made since observation window lengths used
in practice are much shorter than room impulse responses [13].
The corresponding spatial coherence functions for the direct and
diffuse sound components are then given by

Γs(f) = ej2πf∆t, (2)

Γn(f) = Γdiff(f) = sinc(2πf
d

c
), (3)
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respectively, with the time difference of arrival (TDOA) ∆t =

d sin(θ)/c. The coherence of the mixture of the direct-path signal
and diffuse noise can be written as a function of the coherent-to-
diffuse ratio CDR(k, f) = Φs(k, f)/Φn(k, f):

Γx(k, f) =
CDR(k, f)Γs(f) + Γn(f)

CDR(k, f) + 1
. (4)

This can be rewritten as a parametric line equation in the complex
plane, highlighting that Γx lies on a straight line connecting Γn
and Γs:

Γx(k, f) = Γs(f) +
1

CDR(k, f) + 1
(Γn(f)− Γs(f)). (5)

Note that the line parameter [CDR(k, f) + 1]−1 is equivalent to
the diffuseness defined in [14].

3. COHERENT-TO-DIFFUSE RATIO ESTIMATION

Solving (4) for the CDR yields (we omit the time- and frequency-
dependency of the coherence in the following):

CDR(k, f) =
Γn − Γx
Γx − Γs

. (6)

In theory, although the coherence values may be complex, the
CDR is real-valued; however, when inserting a coherence es-
timate Γ̂x (e.g., computed from recursively estimated spectra),
the resulting CDR value will in general be complex-valued, due
to mismatch between the coherence models and room acoustics
and the variance of the spectrum estimates. A number of dif-
ferent practical estimator realizations have therefore been pro-
posed, which implicitly account for these errors, and which we
will compare in the following. In order to illustrate their be-
havior, we visualize the output of different estimators over the
complex plane of possible coherence values Γ̂x in Fig. 1. Re-
sults for a direct path TDOA ∆t = 0 (broadside) are shown
in the first row, while in the second row, results are shown for
∆t = 1

5f . The ◦ marks the coherence of a fully coherent sig-
nal with the respective TDOA, while the × marks the coherence

of an ideal diffuse signal. The straight white line between these
points marks the coherence values which would occur in theory
under ideal conditions for different CDR values, according to (5).
We define the bias of a CDR estimator as the deviation from (6)
for coherence values along this line; i.e., an unbiased estimator
should exactly match (6) for these values, as can be verified by
inserting Γx according to (4) into the estimator equation. Fur-
thermore, due to various effects mentioned before, the coherence
estimates Γ̂x which are observed in practice will not lie exactly
on the line, therefore a good estimator should also be robust in
the sense that some deviations of the coherence estimate from the
assumed model, e.g., caused by an inexact DOA estimate, do not
lead to large deviations of the estimate.

Using the assumptions described in Sect. 2, McCowan et al.
[6] derived an estimate for the target signal under presence of
diffuse noise. Jeub et al. [15] evaluated the same method specifi-
cally for the suppression of reverberation, and, instead of directly
deriving an estimate for the target signal, formulated a CDR esti-
mator [7]. Both McCowan and Jeub rely on the assumption that
the direct path is perfectly time-aligned in both microphones,
which can be achieved by obtaining a TDOA estimate ∆̂t and
applying a corresponding delay to one of the channels [15]. For
ease of analysis and comparison, we here represent this delay
directly in the CDR estimator as a phase shift applied to the co-
herence estimate:

ĈDRJeub(k, f) =
Γn − Re{e−j2πf∆̂tΓ̂x}
Re{e−j2πf∆̂tΓ̂x} − 1

. (7)

Delaying one of the channels to achieve time alignment of the
direct path however also affects the phase of the coherence of the
diffuse signal component. Since this is not accounted for in this
estimator, the estimate is biased for non-zero TDOAs, as will be
shown later.

Thiergart et al. [8, 10] proposed another estimator where the
direct path coherence Γs is computed from a TDOA estimate ∆̂t,
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Fig. 1. Coherent-to-diffuse ratio estimates as a function of complex spatial coherence Γ̂x, for d = 8 cm, f = 1 kHz. Different
estimators (columns) and TDOA values (rows). Coherence of fully diffuse (Γn) and fully coherent (Γs) signals are highlighted.



and the real part of (6) is taken:

ĈDRThiergart1(k, f) = Re

{
Γn − Γ̂x

Γ̂x − ej2πf∆̂t

}
. (8)

While unbiased, this estimator is not robust towards phase de-
viations of the coherence estimate [10], since, for a measured
coherence with a magnitude close to one, even small phase dif-
ferences between Γ̂x and Γs can have a large effect on the CDR
estimate. This can be seen in Fig. 1b, where, unlike in Fig. 1a,
the CDR for coherence values along the unit circle sharply drops
to zero.

We propose a new estimator based on (7), where we cor-
rect the diffuse coherence model by multiplying Γn with the
phase term e−j2πf∆̂t, thereby removing the bias of the estima-
tor caused by the time alignment, while preserving the robustness
towards phase deviation (see Fig. 1c):

ĈDRprop1(k, f) =
Re{e−j2πf∆̂tΓn − e−j2πf∆̂tΓ̂x}

Re{e−j2πf∆̂tΓ̂x} − 1
. (9)

In a second, heuristically motivated variant, which is illustrated
in Fig. 1d, we use the magnitude instead of the real part as in (9).
We found that this increases robustness towards model errors and
leads to increased dereverberation performance [16]:

ĈDRprop2(k, f) =

∣∣∣∣∣e−j2πf∆̂tΓn − e−j2πf∆̂tΓ̂x

Re{e−j2πf∆̂tΓ̂x − 1}

∣∣∣∣∣ . (10)

Note that this estimator has a small bias for non-zero TDOAs;
compensation of the bias however only has a negligible effect on
practical performance and is therefore omitted here.

Thiergart et al. [8, 10] alternatively proposed to use the
instantaneous phase of the cross-power spectrum (which is the
same as the phase of the estimated coherence arg Γ̂x) as a phase
estimate for the direct path model, which has the advantage of
not requiring an explicit TDOA estimate:

ĈDRThiergart2,DOA-indep.(k, f) = Re

{
Γn − Γ̂x

Γ̂x − ej arg Γ̂x

}
. (11)

However, the instantaneous phase of the mixture is not an un-
biased estimate for the phase of the direct path, since, for low
CDR, the coherence of the mixture is dominated by the coher-
ence of the diffuse signal [10]. For θ 6= 0 ◦, this leads to a bias in
the CDR estimate, as can be observed in Fig. 1e, second row.

It is in fact possible to derive an unbiased estimator for the
CDR which does not require knowledge of the TDOA, since the
assumption that |Γs| = 1, i.e., that the direct signal is fully co-
herent, is sufficient to solve (6). This can be visualized using
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the observation that, according to (5), Γx, Γs and Γn all lie on
a straight line in the complex plane, and it is furthermore known
that Γs lies on the unit circle and Γn on the real axis. The result-
ing estimator equation is given in (12) and illustrated in Fig. 1f.

Analogously, we can conclude that unbiased coherent-to-
noise ratio estimation is theoretically possible in noise fields
with unknown coherence Γn, exploiting only the knowledge
that the noise coherence is real. The corresponding estimator,
illustrated in Fig. 1g, is given by:

ĈDRprop4(k, f) =


1

Im Γs
Im Γ̂x

−1
, for Im Γs

Im Γ̂x
≥ 1

∞, for 0 < Im Γs

Im Γ̂x
< 1

0, for Im Γs

Im Γ̂x
≤ 0,

(13)

where the case differentiation accounts for cases where Im Γ̂x
has values outside of the expected range, i.e., a larger magnitude
than Im Γs, or a different sign. An important constraint that lim-
its practical applicability of this estimator is that ∆t 6= 0, since
otherwise the imaginary parts disappear. Note that in [17] a noise
estimate was derived in a similar way from the imaginary part of
a cross spectrum estimate.

Fig. 2 compares the true CDR value and the different esti-
mates for mixtures of coherent and ideally diffuse signals (corre-
sponding to the values along the white line in Fig. 1, second row).
The proposed estimators (9), (12) and (13) are unbiased, as is the
DOA-dependent estimator proposed by Thiergart et al. (8). Our
heuristically motivated estimator (10) has a small, constant bias
that is dependent on ∆t and f . The estimators by Jeub et al.
(7) and the DOA-independent estimator by Thiergart et al. (11)
show a significant bias, here in the form of an underestimation;
for other values of ∆t and f , overestimation can also occur.

ĈDRprop3(k, f) =
Γn Re{Γ̂x} − |Γ̂x|

2 −
√

Γ2
n Re{Γ̂x}

2 − Γ2
n |Γ̂x|

2
+ Γ2

n − 2 Γn Re{Γ̂x}+ |Γ̂x|
2

|Γ̂x|
2 − 1

(12)
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Fig. 3. Coherence-based dereverberation system.

4. CDR-BASED DEREVERBERATION

Fig. 3 shows the structure of a reverberation or diffuse noise sup-
pression system using a short-time CDR estimate [15]. First,
microphone signals are transformed into the STFT domain, and
short-time estimates Γ̂x(k, f) of the spatial coherence are ob-
tained according to (1) from power spectra estimated by recur-
sive averaging. Then, the CDR is estimated, using models for
the direct path and reverberation coherence, and a suppression
gain is computed from the CDR, here, using spectral magnitude
subtraction [18]:

G(k, f) = max

Gmin,

√
µ

ĈDR(k, f) + 1

 , (14)

with the oversubtraction factor µ and the gain floor Gmin. Since
the focus of our evaluation is the CDR estimation, we apply the
suppression simply to the first microphone signal. Alternatives
would be to average the power spectra between microphones [4],
or to use beamforming to combine the signals, which would how-
ever change the CDR and therefore require consideration in the
suppression filter computation [19].

We use sets of measured impulse responses from three
rooms: Room A (6 m × 6 m × 3 m, T60 ≈ 0.4 s), Room B
(lecture hall, 7 m× 11 m× 3 m, T60 ≈ 1 s), and Room C (foyer,
54 m×7 m×3 m, T60 ≈ 3.5 s). In each room, impulse responses
were measured for 40-70 different source positions in l = 1,
2 and 4 m distance from the microphones, in the angular range
θ = −90 . . . 90 ◦. All processing takes place at a sampling rate of
16 kHz using a DFT-based filter bank [20] with window length
1024, DFT length 512, and downsampling factor 128. The co-
herence estimates are obtained by recursive averaging with the
forgetting factor λ = 0.68.

We use the word error rate (WER) of an automatic speech
recognizer for an objective evaluation of the overall dereverbera-
tion performance. 500 utterances from the GRID corpus [21] are
reverberated by convolution with each of the measured 2-channel
impulse responses, and processed by the dereverberation meth-
ods. We compare all CDR estimators discussed in this paper, ex-
cept the proposed variant 4, which does not work for ∆t = 0 and
is therefore only of limited use in this scenario. In addition to the
CDR-based methods, we evaluate a version of [1] (where we di-
rectly use the magnitude of the coherence as the gain, and apply
the enhancement to only one microphone), and the coherence-to-
gain-mapping proposed by Westermann et al. [3] (using offline-
estimated coherence statistics for each room and position, and
the parameter kp = 0.25, which was found to yield good re-

Table 1. Average ASR Word Error Rate.
Room A Room B Room C mean

clean 7.9 7.9 7.9 7.9
reverberated 13.0 50.8 63.6 42.5
Lebart 10.3 26.5 45.2 27.3
Allen 11.2 37.5 52.6 33.8
Westermann 10.3 34.2 49.9 31.5
Jeub 10.6 25.3 35.0 23.6
† Thiergart 1 13.5 36.7 47.6 32.6
† proposed 1 10.6 24.8 33.4 22.9
proposed 2 10.0 23.3 32.6 22.0
* Thiergart 2 10.3 28.4 45.1 27.9
*† proposed 3 10.2 27.1 42.4 26.6

† unbiased
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sults across all rooms). We also evaluate the exponential de-
cay model by Lebart et al. [22] (assuming perfect knowledge
of the reverberation time). For the method of Lebart and the
CDR-based methods, spectral magnitude subtraction (14) is ap-
plied to the first microphone, with Gmin = 0.1; to ensure a fair
comparison, µ is optimized in the range 0.7 . . . 2.5 for maximum
recognition performance individually for each room and derever-
beration method. Ideal TDOA knowledge is used for the CDR
estimators which require a TDOA estimate ∆̂t. The employed
ASR engine is PocketSphinx [23] using MFCC+∆+∆∆ features,
cepstral mean normalization, and a speaker-independent acoustic
model trained on clean speech.

Table 1 shows the resulting WER for the letter and number in
the utterance, averaged over all source positions. The magnitude-
based methods by Allen and Westermann have a relatively weak
dereverberating effect, and, unlike the methods based on spectral
subtraction, offer no direct way of tuning the amount of suppres-
sion, therefore WER improvements are generally lower than with
the CDR-based methods. An exception is room A, where we
found a significant mismatch between the measured late rever-
beration coherence and the diffuse model, which benefits West-
ermann’s adaptation to the coherence statistics. Overall, derever-
beration using the proposed estimators leads to a reduced WER,
both for the case of known and unknown DOA. It is worth noting
that the DOA-independent CDR estimator allows effective dere-
verberation without requiring any prior information or long-term
estimation of signal characteristics, relying only on the short-
time coherence estimate.

5. CONCLUSION

We have investigated and illustrated the behavior of several
known CDR estimators. Based on the observation that known
methods either yield a biased estimate for non-zero TDOAs,
or, in one case, are not robust enough for application to signal
enhancement, we have then proposed unbiased estimators, both
for the case where prior knowledge on the DOA is available, and
where either the DOA or the noise coherence are unknown. We
have shown that applying the proposed methods in a CDR-based
dereverberation system leads to a consistent improvement in
ASR accuracy.
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